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Implementation of the adiabatically adjusting, principal axis
hyperspherical coordinate (APH) approach of Parker and Pack for
three-dimensional reactive scattering requires solution of a senes of two-
dimensional (2D) surface eigenproblems. A new algorithm is presented
that takes the discrete variable representation (DVR) of the surface
Hamiltonian and transforms it implicitly 1o the sequential diagonalization
truncation (SDT) representation of Light and coworkers. This implicit
transformation step, when combined with the implicit restarted Lanczos
method of Sorensen with Chebyshev preconditioning, can be used to
obtain accurate solutions to the large-dimensionality surface eigen-
problems encountered in three-dimensional reactive scattering. Timing
results are presented and comparisons made with the previously employed
SDT-DVR approach for these 2D eigenproblems. The new algorithm is
faster than the SDT-DVR algorithm currently in use by about a factor
ranging from 2.6 to 4.5 for both scalar and vector implementations. This
algorithm also requires much less memory for the same order DVR
Hamiltonian than previous approaches. This permits solution of larger
eigenproblems without resorting to external storage. Strategies for
implementing this algorithm on parallel architecture machines are presented.
€ 1994 Academic Press, Inc.

I. INTRODUCTION

Over the past few years it has become possible to
determine accurate state-to-state reaction cross sections for
three-atom systems with modest numbers of energetically
open initial-and-final quantum states [1--11]. While such
efforts have achieved a high level of accuracy for a few
simple systems, there remain major impediments to the
extension of these methods to the vast majority ol interesting
chemical reactions. On a qualitative level, the basic
theoretical and computational issues are easily characterized,
First, the complexity and computational intensity of current
methods, even for simple three-atom systems, challenge
current generations of high-performance computers.
Second, as one moves beyond these simple chemical
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reactions, the complexity of the calculations increases
significantly because the number of open initial-and-final
quantum states increases by one to two orders of
magnitude. For this reason, such problems are, at this
moment, beyond the realm of consideration.

Within the last few years, the advances registered in high
performance computing technology have revolutionized the
approaches adopted for the treatment of massively
compute-intensive problems. These advances in super-
computing are being accompanied by significant break-
throughs in numerical methods, holding the promise of
realizing substantial savings in compute (imes for the
problems that we can solve today and importantly,
extending the range of chemical reactions for which one can
obtain accurate quantum cross sections and angular
distributions.

The scattering approach that we are secking to enhance—
and with which we have had previous experience [ 12]—is
the adiabatically adjusting, principal axis hyperspherical
(APH) coordinate approach of Parker and Pack [1b] in
conjunction with the log-derivative propagation method of
Johnsen [13].

Below, we present a brief description of the computa-
tional steps necessary to obtain accurate solutions to the
three-dimensional (3D2) quantum mechanical scattering
problem within the context of the APH formalism. The idea
is to include enough detail to explain the context for the
present study while relying on earlier descriptions [1] to
supply complete details. The goal of this paper is to estab-
lish the viability of a new approach for determining the 2D
surface functions that are needed in the APH formulation.
An additional motivation is to develop scalable parallel
algorithms for three- and more-atom reactive scattering
codes. In this effort, we are guided by the pioneering work
of Aron Kuppermann and coworkers [ 14] who have been
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developing codes for distributed-memory parallel architec-
ture machines for several years. Due to differences in the
hyperspherical formulations developed by Parker and
Pack, the surface Hamiltonian used here is not identical to
that generated by Kuppermann et @l in their studies.
Moreover, the strategy for obtaining the solutions to the 2D
eigenproblem (surface functions) is fundamentally different
as will be evident from the discussion below.

In the APH coordinate approach the total wave function
is expanded in a basis of sector adiabatic surface functions,
which in the notation of Ref. [ 1b, sece Eq. (123)] is

M =4y p I py DO, x; p) Dlag, Bo. o)
rA
. (1)

wherein the surface functions, @, are bound state eigen-
functions of the 21D Hamiltonian,

HO0, x50 PO, 3 p)=8lp) PO, 10}, (2)
in which # and y are the two hyperspherical angles and p is
the scattering coordinate. Again the notation of Ref. [1b,
see Eq. (164)] has been followed, but the J, p, and A indices
have been suppressed in Eq. (2) and below in order to
simplify the notation.

The 2D surface Hamiltonian (Eq. (2)) is the sum of three

kinetic energy operators and a potential energy term with
the definition & = 28, the kinetic energy terms are

n 1 a*

T = B o ®
and a diagonal centrifugal term,
foo_ AT (5)

~ up¥(1 —sin §)’

where A is the projection of the angular momentum on the
body fixed axis z. The potential energy operator is

Ppes 8,10 = Viper 9, ) +
[ ] [ ] Sﬂpg’

(6)

where u is the reduced mass of the three-particle system and
V(p, 9, x) is the interparticle potential. As in Ref. [16], we
have followed the lead of Launay and Le Dourncuf
[1lc, 11d] and defined the 2D surface Hamiltonian so that
it is independent of the total angular momentum, J.
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In some earlier work the complexity of the chemical
reaction that could be studied was ultimately determined by
the efficiency and accuracy of the method for obtaining the
surface functions, @. The efficiency of these calculations is
important both for production scattering calculations and
for the setup stages that are needed to make certain that the
number of surface functions and their accuracy are sufficient
for production studies. Consequently, this particular aspect
has been the focus of considerable effort. For the Parker—
Pack APH formulation, three basic approaches have been
developed: the finite element method (FEM) [15]; the
analytic basis function method (ABM) [16]; and the DVR
approach [17]. The DVR has been shown to be both
accurate and efficient in the study of three-dimensional
quantum reactive scattering problems as well as in the
vibrational analysis of floppy molecules and molecules in
highiy-excited vibrational states. The results from these
studies indicate that the DVR approach is particularly
efficient for small and intermediate vaiues of the hyper-
radius, p. In this paper, we present results from a new
adaption and implementation of the DVR approach in
conjunction with an efficient diagonalization scheme
developed by Sorensen [18]. This new approach forms the
basis for a scalable parallel computational algorithm
both at the highest sector-level of granularity and the
intermediate eigenvaiue/eigenvector-level of granularity.

In focusing on the DVR approach, it is not our intention
to suggest that the DVR is the most appropriate method to
be used for all p values. In fact, the ABM method seems
to have greater utility for large p values [16], and it is
anticipated that for most problems there will be some
turnover value of p, where the bases should change from the
DVR to the ABM.

In the first stage of the calculations, the two-dimensional
Schrodinger equation, Eq. (2), is expressed in a preseiected
representation, and, subsequently, the eigenvalues of the
Hamiltonian and their associated eigenvectors are found.
These are needed in order to generate and solve the
APH coupled-channel (CC) equations that arise upon
substituting the surface expansion of the total wave function
into the full Schrodinger equation. The large-grain
parallelism of the computations for this stage arises from the
fact that the computations for each sector, {, may be carried
out independently. By assigning each sector to a different
processor, or to a set of processors, one may achieve
computational speedups that scale linearly with the number
of processors. Moreover, the power of the new algorithm
that we present here is that it is also scalable at the
intermediate eigenvalue/eigenvector-level of granularity,
where the use of clusters of processors for each sector can
also privide significant speedups.

In the second stage, the potential coupling matrix
elements are determined for each sector using the sector
surface functions determined in the first stage. While there
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are several coupling terms that must be calculated, the term
containing the interaction potential has the form

n‘{/r‘,t' = <¢r(9! X Pc) 'AV(.PC! P ‘93 X)i ¢r'(6a . Pc)>s (7)

where

2

P
AVipy, p. 9, x) = V(p,s,x)7§ Wpn92)  (8)

(see Eq. (168} in Ref. [1b]). At this stage we also determine
the sector-to-sector overlap matrix elements,

Ou =P Ap ) P(pgs1)) (9)
As in the first stage, one may achieve significant
enhancements by assigning each sector and the adjacent
sector-to-sector overlap matrices to a different processor or
set of processors. Once again the large-grain sector
parallelism ieads to algorithms that are inherently scalable
as the number of processors or clusters of processors is
increased.

In the third stage, the log-derivative matrix, which is
directly related to the wave-function @{p) in Eq. (1), is
propagated starting in the exchange region {small p) and
terminating in the asymptotic region (largep). The
propagation phase of the calculations is implemented using
the LOGDER/VIVAS program [13, 19]. One simple
scheme for achieving high levels of parallelism for this stage
is to assign different scattering energies to different
processors or groups of processors. For this approach one
needs multiple access to all the coupling-matrix elements for
all sectors. Another approach is to assign a sector to a
processor or cluster of processors, as in stages 1 and 2, and
then run the scattering energies through the sector sequence
in a pipeline fashion. If the number of energies and total
angular momenta, J, greatly exceed the number of sectors,
this may be the method of choice because there will be less
interprocessor communication between stages 2 and 3 and,
importantly, multiple access to all the coupling matrix
elements is not required. Parker has worked with this stage
in a distributed processor environment [207].

In the fourth stage, the asymptotic boundary conditions
are applicd in the usual way, and the elements of the
scattering matrix, S, are determined. Kuppermann [14b]
has pointed out previously that this stage is so rapid that a
single processor is probably all that will be needed to
efficiently determine the scattering matrix elements.

The four computational stages described above present
varying degrees of computational demands. The first srage
(calculation of the surface functions and their associated
eigenvalues) and the third stage (the propagation of the
logarithmic derivative of the wave-function) both involve
substantial computer resources. In this paper we will be
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reporting a scalable algorithm for the first stage that also
turns out to be more efficient on normal scalar and vector
computers than the current method of choice. While the
application and numerical results presented here all deal
with three-atom scattering, the approach presented can be
extended to four- and higher-atom scattering or to bound-
state quantum problems. For these higher dimensional
problems the efficiency of this general approach may be
even more significant.

Il. THE SEQUENTIAL DIAGONALIZATION
TRUNCATION METHOD

In the following we discuss the solution of Eq. (2) as it
has been implemented in the Parker—Pack 3D reactive
scattering system. The method utilizes the sequential
diagonalization truncation (SDT) scheme of Light and
coworkers [217]. This method results in the reduction of the
order of the 2D surface Hamiltonian #”¥® through a series
of steps involving diagonalization of relatively small
matrices, the truncation of unwanted solutions, and the
eventual diagonalization of a Hamiltonian matrix with
significantly reduced order over the original DVR
Hamiltonian [ 21, 22].

The finite basis representation upon which the DVR is
based consists of a product of normalized Legendre
polynomials in cos & and symmetry-adapted normalized
trigonometric functions (I, {x)=cos2(m— 1)y, m=1,
2, ., mp,, ) for the # and y degrees of freedom, respectively.
The surface function expression in the direct product FBR
is [21, 22]

Imax  Pmax

@,=3 ¥ ki,Picos$)I1,(x).

I=0 m=1

(10)

Within the DVR the coupled equations are designated by
quadrature points of the FBR and not by the FBR basis. As
noted by Light and coworkers [21], both bases, the
N-point quadrature and the set of N FBR basis functions,
are isomorphic. The DVR and FBR Hamiltonians are
related through a unitary transformation,

#DVR=UTHFBRU, (11)
where U is the FBR-to-DVR transformation matrix.
Defining a diagonal 8 factor as

SR = [sin (ﬁ)}_z 3
0,§ ) if>

the surface Hamilton in the DVR can be written in tensor-
product form [22] as

(12)

;#DVR=h9DVR®Ix+f£)VR®hEVR+VDVR, (13)
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where h, and h, are the kinetic energy operators for the 8
and y degrees of freedom associated with 7° and
T sin(9/2), respectively (see Egs. (3), (4) and where VPR
is diagonal. Expressions for hy¥® and h2V® are given in
Appendix A.

Choosing a DVR for the matrix representation of the
Hamiitonian significantly reduces the computational labor
associated with the calculation of matrix elements since the
DVR transfers the coupling from the potential operator to
the kinetic energy operator. In the FBR the number of
potential matrix elements that need to be determined is
equal to the square of n"PR xnEP® for each energy of
interest, where n7®® and #5®® are the FBR expansion sizes
for the y and @ bases, respectively. The potential matrix is
diagenal in the DVR and the elements are equal to the value
of the potential energy at the points labled by specific values
for a ¢ and y pair and the value of p,.

The matrix of the Hamiltonian (Eq. (13) has a regular
and sparse structure. The matrix may be written as

HOVR_B A (14)
with
B=%R,i=1, ., ny), (15)

where each 4, is an n, by n, block diagonal submatrix,

B, 0 - 0
a={ 0 . o

Hghp

the elements of which are the second and third terms in
Eq. (13), where the potential energy term is augmented by
the total angular momentum term if 4 is different from zero,
viz.,

1547 #A?

P4p,. 8, )= Vip,, 9, + —.
Pz, & x)=Vip, X)+8,up§ wpl—sin9)

(16)
The first term in Eq. (13) is the 8 — ¥ coupling portion of
#PVF and may be expressed as

A =4, (mn=1,.,n), (17)

where o, is an n, by n, submatrix with diagonal elements
only. Pictorially, 2™ may be represented as

Ay A An Hing
Ay Ay An Hrng
H = 3{31 Jf;z 3(33 “x,:;ng
‘)f)‘ml 9{:@2 ‘%lr‘ig] e ‘%;rgng
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A unique feature of the " matrix is that for each .7}, all the
diagonal elements are identical for the entire subblock #, or
Ay =a,l, where a, is a scalar and 1 is the unit matrix. The
elements of these matrices account for the coupling between
the y and & degrees of freedom.

The first step in the implementation of the SDT method
defines a suitable contracted representation to which the 2D
surface Hamiltonian can be transformed. This representa-
tion is chosen as that in which the block diagonal matrices
2, have a diagonal form. Prior to their diagonalization in
the SDT approach, the submatrices %, have a diagonal
form. Prior to their diagonalization in the SDT approach,
the submatrices &, are reduced in order by discarding those
rows and columns corresponding to the potential values
(Eq. 16} that have a magnitude above a preset cutoff poten-
tial. This “filtering™ has the effect of excluding those regions
of the potential surface that are inaccessible at the scattering
energies of interest. The matrix  is defined such that

Q'BQ=Y, (18)
where Y is a diagonal matrix composed of the series of
submatrices ¥,

Y=7,(i=1,.,n), (19)
r, 0 0 0
0 Tp O 0

Y= 0o o r, 0
0 0 o0

nang

Q is actually composed of a series of diagonal bilocks, again

with order <n,, viz,
Q=0, (=1, ..,n4), (20)

with Q, =0 for i # j and, pictorially, Q looks exactly like B.

It follows that

(21)

};Bﬁst= T,

The truncated representation is obtained by retaining
only those parts of the coefficient matrices, Q;, the
associated eigenvalues of which are less than a predeter-
mined cutoff value, ecur. This defines a set of rectangular
matrices J ;.

In the third step, the Hamiltonian matrix 2# VR is trans-
formed to the representation defined by the truncated Q. 1t
is this contraction that is responsible for the substantial
reduction in the dimension of the Hamiltonian matrix,

J"'?DVR — QT#DVR Q (22)
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The resulting matrix, ## "X, which is explicitly calculated,
is no longer sparse and may contain more nonzero elements
than the original unreduced #®V®. Thus, in the final step,
the matrix #"Y® is diagonalized using standard dense
matrix techniques. This contrasts with the method to be
discussed in the next section.

IIl. SCALABLE IMPLEMENTATION OF
THE SDT METHOD

This method is based upon an analysis of the matrix
formed as a result of the tensor operations in Eq. (13). The
resulting 2D Hamiltonain consists of a series of diagonal
blocks of order n, and a series of offdiagonal submatrices
(also of order n,) that contain only diagonal elements (see
Fig. 1). Such a form allows for efficient formation of the
matrix elements, low storage requirements for the matrix,
and specialized diagonalization methods for the matrix that
preserve the original sparse matrix A#°VE,

As in Eq. (14), the 2D Hamiltonian matrix #°"® is
expressed as the sum of two matrices, viz.,

HPVR=B+K; (23)
however, here we have made a slightly different separation
of terms. The matrix B still consists of diagonal blocks each

N

N

FI1G. 1. Illustration of the structure of the DVR Hamiltonian,
Eq. (13). The inner blocks, which are the dense y-space matrix elements,
are depicted by shaded blocks of dimension n,xn,. The off-diagonal
blocks cotresponding to different 8-space DVR points are equal to a
constant along the diagonal of each offdiagonal block and zero elsewhere.
This is indicated by the connected diagonal lines. Appendix A provides an
explanation for this simple and sparse structure of the DVR Hamiltonian.
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of which has order », and the matrix K is a series of off-
diagonal rays whose submatrices have order n,. One may
express the matrix B as a series of submatrices B, with

B=2B;(i,j=1,.. ng), {24)
where B; =0 for i # j (compare Eq. 14), and
Bir‘=~@n+«7ﬁn (25)

Similarly, the K matrix may be cxpressed as a series of
submatrices K;;

K=Ky (ij=1, 1), (26)
where K;= X}, for i # jand all K;=0. As a result, one can
then store K as an n, by n, array.
The matrix Q is again defined such that
Q"BQ-=7Y, (27)
where Y is a diagonal matrix composed of the series of
submatrices ¥,
Y=r,{(i=1,..,ng). (28)
{see Eq. (19)). The matrix Q generated here is the same
matrix as that generated in the previous SDT implementa-
tion. This follows from the fact that each %, differs from the
corresponding B,; by a constant {«;;) along the diagonal (see
Eq. (25)). While the eigenvalues will shift by a constant
amount, the eigenvectors do not change. Each individual 7
now contains the eigenvalues of the corresponding 4,
shifted by u,,.
As in the previous discussion of the SDT method, the
matrix to be diagonalized is reduced by the transformation

Q"™ Q=07BO +Q7KO

=Y +Q"KQ, (29)

where again a specified energy cutoff, ecut, is used to cast
out those parts of Q; corresponding to eigen solutions
above the cutofl. The truncated Y is, in general, no longer
the regular matrix given in Eq. (28), but it is rather a series
of ¥, where each submatrix can now have an order
0<n,<n,. The transformation QTKQ will proceed over
the appropriate order of J, (corresponding to the order
of T’). However, the diagonalization of
QTH#"*Qx Y +Q"KQ (30)
can still be accomplished without explicitly forming the full
matrix. In the previous formulation of the SDT method the
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transformation Q*KQ is completed explicitly, producing a
dense matrix that must be diagonalized.

The implied transformation can be accomplished
efficiently using the implicitly restarted Lanczos algorithm
(IRLM) [18] to calculate the needed eigenvalues and
eigenvectors. IRLM is a subset of a Fortran software pack-
age ARPACK, developed by P. A. Vu and D. C. Sorensen
that handles a varicty of standard and generalized eigen-
problems. The IRLM requires a user-supplied routine that
accomplishes the matrix-vector product [Y + QTKQ]x but
does not require explicit formation of the matrix to be
diagonalized. Since the matrix-vector product represents
the majority of the work done in the scheme, the efficiency
of the matrix-vector product routine is central to the overall
efficiency of the Stage 1 calculation.

IV. PARALLELIZATION

As noted previously, the conceptual framework for the
design of a parallel algorithm for Stage 1 of the overall 31>
scattering calculation emanates from the potential for large-
grain parallelization inherent in the division of the p-space
into many sectors and the potential for medium-grain
paraliel algorithms associated with the eigenvalue problem
that must be solved for each sector. Here there is the
obvious trade-off between the number of processors
assigned to each sector and the number of sectors assigned
to each cluster. Load balancing among the sectors needs to
be addressed because the order of the 2D Hamiltonians may
change dramalically from sector to sector. However, within
the SDT method the ultimate order of the matrix to be
diagonalized after the truncation procedure does not
vary much across the various sector calculations. Major
differences may be addressed by judiciously adjusting the
number of processors per cluster at the intermediate levels
in order to have convenient access to the necessary memory
and to achieve optimal load balancing.

Since the steps necessary to achieve efficient large-grain
parallelization at the sector level are rather obvious, we will
focus our discussion on the intermediate level (cluster level)
of parallelization that is possible for each sector. In the
context of this application, the important contribution of
the IRLM algorithm is that it facilitates and makes possible
the efficient mapping of the eigenvalue/eipenvector com-
putations onto a cluster of processors [ 18b], provided the
necessary matrix-vector product can also be efficiently
mapped onto the same cluster. To demonstrate that this is
the case, we begin by noting that there are two major parts
of the code. The first consists of the creation of the B, and
the Q,, submatrices. For this step it is not necessary to have
direct access to the entire 2D Hamiltonian matrix. A single
processor can generate and diagonalize the submatrices B,
producing the submatrices 3.

PENDERGAST ET AL.

The next step is the formation of the matrix-vector
product. If one splits the matrix-vector multiply into its
component parts, viz.,

y=[Y+QTKQ]x (31)
becomes
u=0x (32a)
v=Ku (32b)
w=0QTv (32¢)
and
y=Yx+w, (32d)
where
W= ZU Ora;10,x;. (32¢)

J#i

Appendix B contains the derivation of Eq. (32e). In order to
form the matrix-vector multiply each processor or cluster of
processors requires the full set of O, and the entire vector x.
A version of the code empioying the matrix-vector multiply
schéme of Eq. (32¢) has been implemented and parallelized
on a Cray YMP,

For those machines with BLAS (basic linear algebra sub-
roulines) routines, each w; can be calculated using 2n, gemy
calls and (n; — n,) axpy calls. If each processor in the cluster
has access to all the @.’s and initially to the x; component
of the full x, the matrix-vector multiply can be accomplished
by establishing a loop of nearest neighbor processors that
each contains one x; component of x imtially. Following
computation of the partial sums for each y;, the x, are then
passed around this loop of processors so that the full sums
can be obtained. The resulting y; can be passed directly to
the IRLM algorithm without interprocessor communica-
tion, provided the multiprocessor mapping is arranged to
correspond to IRL.M’s matrix-vector partitioning [ 18¢]. As
a resuit, the interprocessor communication associated with
the matrix-vector product is relatively smail and efficient.

Y. POLYNOMIAL PRECONDITIONING

There are two fundamental computational costs
associated with IRLM. One is the cost of the internal
numerical operations required to perform the IRLM. These
include both the orthogonalization and the updating opera-
tions applied to the basis vectors. Second, there is the cost
associated with performing a matrix-vector product with
the discrete Hamiltonian #°Y®, Typically, each iteration of
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the IRLM requires a number of matrix vector products with
#PVR proportional to the number of eigenvalues sought.

The IRLM takes fewer iterations when the desired cigen-
values are well separated and near one end of the spectrum.
The eigenproblems arising in this application present a
distribution of eigenvalues that are well separated at the
right end and tightly clustered at the left end of the
spectrum. This is opposite to the desired distribution since
we seek the eigenvalues at the left end.

A standard way to accelerate convergence of Lanczos
algorithms in general is to find the eigenvalues and eigen-
vectors of a function of the matrix and then use the
eigenvectors to compute eigenvalues of the original
matrix, A, via Raleigh quotients. For example, if

$A)q=qu

then Aqg=qx (33)

with

h=q"Aq, p=4(2).

(34)
This function ¢ should, of course, be constructed so that the
transformed spectrum {u=¢(4):Aespectrum(A)} has a
desirable distribution.

The eigenvalues of interest are in an interval (0, ay) and
the entire spectrum of the matrix lies in an interval (0, a,)
with ay<a,. To enhance convergence in this case, one
should construct ¢ to be monotone decreasing rapidly on
the interval (0, a,) from a large positive value at zero to a
reiatively small value at @, and then to be as small as
possible in absolute value over the remaining interval
[ag, a;). One of the more commonly used transformations
is the shift and invert method which sets ¢ as ¢(1)=
I/(A+ a), where ¢ is some fixed non-negative number. The
corresponding matrix function is

P(A)=(A+oD)7 L (35)

The Lanczos process for this transformed matrix would
require matrix vector products of the form

w={A+ol) 'v (36)

at each step. Since the inverse of a sparse matrix is often
dense (and also for numerical reasons), this operation is
generally accomplished by solving the linear system

(A+ol)w=up {37)

This may be done by computing the Cholesky factorization
of the matrix and then using the triangular factorization to
solve linear systems of this form at each step of the Lanczos
iteration. Unfortunately, this approach is not attractive for
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our application since the Cholesky factors of the #°°VR
matrix will be nearly dense.

Another approach is to use an iterative method to solve
these linear systems. With an appropriate pre-conditioner
[23] this might be viable,. However, at present we have not
found a pre-conditioner that will make the iterative solver
for the linear system converge fast enough to produce a
saving in time with respect to just using the IRLM on the
original matrix. This may be explained to some extent by a
heuristic argument concerning the amount of information
present in the underlying Krylov subspace associated with a
fixed number of matrix vector products with the matrix A
and a given starting vector v,. Further investigation is
needed for a complete analysis.

An alternative is to construct a function ¢{A) that is casy
to compute, One possibility is to construct a low degree
polynomial ¢. There are many options. A standard choice is
to use a Chebychev polynomial associated with the interval
[aq, a,)- This polynomial may be specified in several ways.
In terms of its roots, the polynomial is

[T (A=u), (38)
=1
where
u;= ¢ +rcos(n;), m=m(2j—1)2m,  j=1,2,.,m,
(39)

with ¢ being the center and r being half the length of the
interval [ g, @, ). These polynomials are usually specified by
a three-term recursion and when normalized to be monic,
the mth polynomial has the well-known property of having
the smallest maximum absolute value on the interval
[ag, a;) over all monic polynomials of degree m. See
Rel. [ 24] for further details.

This can be very effective but there are again trade-offs
concerning the degree m and the overall effect on the total
number of matrix vector products required. acceleration has
been used in a different form by several authors including
Saad [25], Chatelin and Ho [267], and Sadkane [27].
Here, we merely hope to obtain a transformation of the
spectrum that will induce favorable convergence properties
within the IRLM.

V. RESULTS AND DISCUSSION

To evaluate the proposed approach we have subjected
our new algorithm combined with the IRLM algorithm to
a wide variety of tests in order to determine how robust
the method is for obtaining the eigensolutions of the
surface Hamiltonian. We have also carried out detailed
comparisons of this new approach with the SDT algorithm
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that is currently used in the APH scattering code. To
evaluate both the relative computational times and the
memory Iequirements, representative diagonaliization
problems were selected spanning the typical range of
representation-dimensionalities employed in the generation
of surface functions for relatively light, atom-diatom
reactive scattering problems. The potential and other
parameters from the recent study [12] of the reaction
He + H7 — HeH ™ + H were used throughout. The perfor-
mance of the codes on both workstation-type machines, as
well as on a supercomputer that allows for efficient
vectorization, has been examined. The representative results
for different types of machine architectures are reported as
a way of gauging the expected enhancements on machines
widely utilized in scientific research and production runs.
The relative storage requirements of the DVR codes are
important because more complex systems will involve more
storage, and, for distributed memory systems, the memory
requirements can be a significant issue.

Table I contains a summary of timing tests on a Cray-
YMP for a variety of orders of Chebychev polynomial
preconditioners. As a result of these and other studies of
various Chebvchev preconditioning schemes we have
decided that a six-term polynomial preconditioner is suf-
ficient to transform the eigenvalue spectrum so that the
desired eigenvectors and eigenvalues can be determined
efficiently using the IRLM for this particular application.
For this reason, all the results reported below for the new
algorithm (i.e., present results) have utilized a six-term
Chebychev preconditioner. Figure 2 shows the normal
eigenvalue spectrum for # Y%, demonstrating the dense
pattern of eigenvalues at the left end of the spectrum and the
less dense pattern at the right. Figure 3 shows the eigenvalue
spectrum after preconditioning with a six-term polynomial
Note the difference in the eigenvalue spectrum as compared
with Fig. 2.

In Table II we report the performance of both versions of
the SDT-DVR code (the new and the conventional) in

TABLE I
Timing Results Comparing Order of Chebychev Polynomial

Order of polynomial Case 1° Case 2¥ Case 3¢
2 14.1 230 274
3 134 223 257
4 134 230 26.1
5 15.0 224 26.5
6 14.2 254 25.7

Note. Times in seconds on a single processor of a Cray YMP.

¢ Full dimension = 5000; truncated dimension = 772; p = 8.05 bohr.
* Fyll dimension = 7200; truncated dimension = 928; p = 8.05 bohr.
¢ Full dimension = 7200; truncated dimension = 1099; p = 5.0 bohr.
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FIG. 2. Plot of the cigenvalue spectrum of #°YF following SDT
truncation, Full DVR dimension =3200; truncated dimension = 735;
o =5.0 bohr. The abscissa denotes the eigenvalue number and the ordinate
gives the eigenvalue. Note the density of the eigenvalues on the left end of
the spectrum, The dots designate every tenth eigenvalue.

addition to their respective memory requirements over a
range of dimensions representative of those that are
employed in the investigation of smali-to-medium size
systems.

The results for the SPARC-2 test runs indicate clearly the
superior performance of the new approach over the conven-

]

200 —]

Te(E)

100 — =

Energy

FI1G. 3. Plot of the eigenvalue spectrum for the same case as in Fig, 2.
The abscissa denotes the eigenvalue and the ordinate give the value of the
sixth-order Chebyshev polynomial at the ordinate value, Note the change
in density of the eigenvalue spectrum at the left end of the plot due to the
Chebyshev transformation Eqs. (38) and (39). The dots designate every
tenth eigenvalue.
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TABLE II

Timing Results and Memory Requirements for the Present and
Conventional Sequential Diagonalization Truncation Runs on a
SPARC-2

Time Memory
Ne Ny N, N* O M PMY CM* PMT  CM?*
3200 40 80 735 100 306 1041 38 126
7200 60 120 1099 100 943 3470 96 352
9750 65 150 1193 100 1169 4393 147 522
11250 75 150 1376 100 2960 6717 169 632
12800 80 160 1467 100 3521 8182 200 750

% The original order of the Hamiltonian matrix.

®The order of the Hamiltonian matrix subsequent to truncation due to
the application of ecut.

¢ The number of eigenvalues requested.

4 The execution time in seconds on the SPARC-2 employing the present
SDT method.

¢ The execution time in seconds on the SPARC-2 employing the conven-
tional SDT method.

/The memory requirement on the SPARC-2 for the present code in
megabytes.

¢ The memory requirement on the SPARC-2 for the conventional SDT
code in megabytes.

tional SDT-DVR implementation. For dimensions equal to
or greater than 3200 our present DVR code is, on the
average, more efficient than the conventional implementa-
tion by a factor of 3 to 4. Since a typical production run for
a single value of the total angular momentum might require
of the order of 1000 such diagonalizations, the extent of
savings in total computational time to be secured through
the implementation of this new approach is considerable.

There are several reasons for this enhanced performance.
The most important factor is our ability to convert a full
diagonalization problem into a much smaller eigenvalue
problem. Computational effort is thus focused on the
portion of the eigenvalue problem that is actually of interest.
Such a strategy results in speedups in both execution time
and wall clock time for production runs. Moreover, use of
the IRLM preserves the sparse structure of the 2D
Hamiltonian through the matrix-vector product phase of
the computations.

A third significant advantage of the new algorithm is the
particular implementation of the Chebyshev precondition-
ing process developed for this application. For each case the
range of unwanted eigenvalues (ie., the region [4,,a,))
must be specified. Since IRLM is very efficient in finding the
largest eigenvalue of the SDT-DVR Hamiltonian, opera-
tionally one can specify 4, by setting it equal to the highest
calculated eigenvalue. This is a very rapid calculation even
without the Chebychev preconditioning because the highest
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eigenvalue is well separated from the rest of the spectrum
(see Fig. 2). Selecting a value for a, is not as straightforward
because the nature of the eigenvalue spectrum is not known
in advance. After numerous empirical tests to determine the
optimal values of a, for various problems as well as the
sensitivity of the computation times to the variation of 4,
from the optimal value, we discovered that setting 4, equal
to the value of SDT cutoff energy, ecut, produced a very
effective preconditioning polynomial for this application.
Moreover, this value is only slightly less effective than the
optimal value of 4.

The last two columns of Table IT summarize the memory
requirements of the two SDT-DVR codes. Here the new
code also has the advantage. Its memory demands are on
the average much less than those required by the conven-
tional approach—about a factor of four less. The difference
in the memory requirements for the two SDT-DVR
implementations arise from two factors: (1) the largest
memory requirement in the previous SDT-DVR code comes
from the choice of eigenvalue/eigenvector routine used for
the truncated 2D Hamiltonian. The routine calculates afl of
the eigenvalues and eigenvectors, thus requiring storage
capacity for these values. IRLM allows one to choose the
number of eigenpairs calculated and only requires storage
proportional to twice the number of eigenvectors requested,
thus providing for significant savings. (2) The previously
implemented code actuaily completes the transformation of
Eq. (22) and stores the entire truncated 2D Hamiltonian.
The final order of this matrix is approximately 272 | n,(7)-
Under the best of circumstances the previous code requires
storage for two matrices of this order: one for the matrix
and one for the eigenvectors. The newly implemented code
requires only the rectangular 3, arrays (at most ngni
words) plus the eigenvector storage mentioned above.

Tables ITT through VI provide an assessment of the
performances of both computer codes on three different
types of machines, each with its own unique architecture.
Each table presents results for a particular case charac-
terized by its full representation dimension, the truncated
dimension, and the value of the hyperspherical scattering
coordinate p. The four cases were chosen as being
representative of systems that have been or are being
currently investigated, or of those into which we want to
expand our research efforts in the near future. We have also
included the amount of the total time of the calculation
spent in the matrix-vector product routine. This is about
two-thirds of the total time involved in the calcunlation
because the routine is called a large number of times from
the IRLM routines.

Results listed in Table ITI for p = 5.0 bohr and a truncated
dimension of 735 are representative of dimensions employed
in the study of system such as HeH in regions where the
propagation is less than half-way complete. The perfor-
mance ratio—the old time divided by the new time—
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TABLE 111

Timing Results for the Present and Conventional Sequential
Diagonalization Truncation Runs

TABLE V

Timing Results for the Present and Conventional Sequential
Diagonalization Truncation Runs

MyVe Total? Performance© MV Total® Performance®
Machine time time ratio Machine time time ratio
SPARC-2¢ 192 306 3.6 SPARC-24 320 460 30
SPARC-2 — 1118 SPARC-2 —_ 1379
RS-6000/530 49 g1 4.0 RS§-6000/530 80 125 31
RS-6000/530 -— 320 RS8-5000/530 — 393
CRAY-YMP 7 12 26 CRAY-YMP 8 14 30
CRAY-YMP — 31 CRAY-YMP — 42
Note. Full dimension = 3200; truncated dimension = 735; p = 5.0 bohr Note. Full dimension = 5000; truncated dimension = 772;

“The CPU time spent in the matrix-vector multiplication routine in
seconds.

# The CPU time in seconds for setup plus diagonalization.

“The performance ratio=CPU time {conventional code)/CPU time
{present code).

?The first line of each entry for each machine is for the current method
while the second line is for the conventional method,

increases in going from the CRAY-YMP to the SPARC-2
and the RS6000 with a range of [ 2.6, 4].

On the Cray YMP the range of megaflops (MFLOPS)
for the present code was 104 (n,=80; n,=40) to 127
(n,=120; ny=1060) while the range for the conventional
code was 127 to 138. Both codes vectorize about the same
amount with the conventional code working with a fuil
truncated matrix while the present code’s performance is
dependent upon the length of the n, and n, variables. As
these numbers increase, better use is made of the Cray’s

TABLE IV

Timing Results for the Present and Conventional Sequential
Diagonalization Truncation Runs

My Total® Performance®
Machine time time ratio
SPARC-24 672 943 4.1
SPARC-2 — 3833
RS-6000/530 174 252 45
RS-6000/530 — 1141
CRAY-YMP 16 26 37
CRAY-YMP C— 96
Note. Full dimension = 7200; truncated dimension = 1099;

p=35.0bohr

7 Matrix vector multiplication time.

& Setup plus diagonalization.

¢ Performance ratio = conventional CPU time/current CPU time.

4 The first line of each entry is for the current method while the second
line is for the conventional method

p=8.05 bohr

“The CPU time spent in the matrix-vector multiplication routine in
seconds. .

¢ The CPU time in seconds for setup plus diagonalization.

“The performance ratio =CPU time (conventional code}/CPU time
{present code).

“The first line of each entry is for the current method while the second
line is for the conventional method

vector processors, resulting in an increased MFLOPS
performance.

Table I'V contains results from a case at the same p value
of 5.0 bohr but with a higher truncated dimensionality of
1099. There is an overall increase in the performance ratios
across the various machines. This is an important factor to
be taken into consideration in conjunction with the
feasibility of studies focusing on systems characterized by a

TABLE VI

Timing Results for the Present and Conventional Sequential
Diagonalization Truncation Runs

MVe Total® Performance®
Machine time time ratio
SPARC-2 515 743 ' 32
SPARC-2 — 2416
RS-6000/530 129 1954 36
RS-6000/530 —_ 705
CRAY-YMP 15 25 2.8
CRAY-YMP — 70
Nore. Full dimension = 7200, truncated dimension = 928;

p=8.05 bohr

2The CPU time spent in the matrix-vector multiplication routine in
seconds.

® The CPU time in seconds for setup plus diagonalization.

° The performance ratic defined as CPU time (conventional code )/CPU
time (present code).

9 The first line of each entry is for the current method while the second
line is for the conventional method
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higher density of states than the HeHZ results presented
here. Performance ratios ranging from 3.7 to 4.5 are found
for this case.

Table V summarizes the results from a case representative
of regions lying in the second half of the HeH; propagation
at a p value of 8.05 bohr and a reduced dimension of 772.
The performance ratios for this case are about 3.

Finally in Table VI results are presented for a case similar
to the previous one but with a somewhat larger DVR
representation as might be characteristic of a more state-
intensive system. Here too the performance ratios range
from 2.8 to 3.6.

¥I. CONCLUSIONS

The results presented in this paper indicate that our new
algorithm, which combines the SDT-DVR method [21]
and the IRLM algorithm [ 18] with several special features,
provides the basis for a robust methodology for obtaining
the 2D surface functions needed in the APH 3D reactive
scattering method of Parker and Pack [1]. The new code
has been developed and tested. It is about 3 to 4 times faster
and requires only about one-fourth the memory needed for
the current implementation of the SDT-DVR code. These
initial results are sufficiently encouraging for mainline scalar
and vector machines that we plan to incorporate this new
option into the full 3D scattering code in the near future.
This new approach to a demanding phase of the overall
scattering problem will facilitate both setup and production
studies of systems with more energetically-open initial and
final quantum states. Beyond the applications possible with
traditional scalar and vector processors, it is significant that
this new algorithm is, in principle, scalable with the total
number of processors on a massively parallel architecture
computer. Work to implement this new code on massively
paraliel systems such as the Intel Delta and the CM-5 is
currently underway.

APPENDIX A

The derivation of the matrix elements needed to assemble
the 2D Hamiltonian matrix #°Y® begins with Eq. (16) of
Ref. [22],

hDVR UThFBRU (Al)

where the operators for hi®® and h!®® matrix clements are

At 16 9 &
ng—

hg=—5———
? 2_up§sinsas a9

(A2)
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and

a9
- A.
hy 2up} 3y (A-3)

The finite basis representation (FBR) for the #-space is
formed from the normalized associated legendre polyno-
mials P9(cos 9). The transformation between the FBR and
the DVR basis functions is

DPVR(cos 9) = Z UjPYcos 9),

(A4)

while, according to the Christoffel-Darboux theorem, U? is
given by

U% = P%(cos 8,y w? (A.5)

wherein 3, is the value of 3 at the quadrature point indexed
by j and w; is the corresponding weight for this Gauss-
Legendre quadrature point. Thus 9, is the jth zero of
P} (cos 9).

From Eq. (A.1) it follows that

hg ") = <Dy kg™ D;»

fnax  fmax

=Y Y UsUL.{PYcos3)) |hy| P)(cos 3,)).

I=0 I"'=0

(A.6)

Using Eq. (A.2) and the orthonormality of the P%(cos 8)
one obtains

2

REBR(IY=— I+ 1) &, A7
? s (I+1) 0, (A7)
which, upon substitution into Eq. (A.6), results in
8A* ‘s
ROVR(jiY=— Y. Hi+ 1) P(cos 8,} P%(cos 9, )(w,w;) ">
HP: i—o
{A.8)

From Eq. (A.8) and the expression for the 2D Hamiltonain
matrix # °Y®, Eq. (13), it can be seen that the contribution
to # VR from the h§¥® ® I, term can be written simply as
a,-I,. It is this feature of the DVR tensor product when
combined with the properties of the f§¥* @ hDY® term,
discussed below, that leads to the offdiagonal striping
illustrated in Fig,. 1.
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For the y-space and the range of integration zero to =/2,
the normalized basis set (I, =N, cos(2(m—1)yx)),
m=1,2,.,m,,., is the finite basis represéntation, where
N, is the normalization factor, The transformation between
the FBR and the DVR 1s

Hmax

DY) = Y Uk L (x),

m=1

(A.9)

where, according to the Christoffel-Darboux theorem, U* is
given by

Uk =1L (1) Wi, (A.10)

wherein y, is the value of y at the Gauss—Chebychev
quadrature point indexed by & and w, is the constant
weight, n/2m ., .

From Eq. (A.1) it follows that

hy VR Ukk') = (D |1y "®| D>

Mmax  Pmax

=) X UL UbwldL () | (36 ).

m=1 m=1

(A.11)

Using Eq. (A.3) and the orthogonality of the I7 (x,), one
obtains

2h
thR(mm’)=—2m25mm, (A.12)
¢
which, upon substitution into (A.11), leads to
DVR ’ 2ﬁ sy 2r71x X
l'lx (kk)=7 Z m UmkUmk" (A13)
{m=1}

From Eq. (A.13) and the expression for the 21D Hamiltonian
matrix # PR, Eq. (13), it can be seen that the contribution
to #°YF from the fDVF ®h;f“"R corresponds to the 48
matrix of Eq. (15). Since the matrix for {2V is diagonal, it
follows that the offdiagonal % blocks are zero.

APPENDIX B
The 2D Hamiltonian matrix # "V is expressed as

H#PVR_B+K, (B.1)

where B consists of a series of block diagonal submatrices of
order n, and K is the matrix of off-diagonal rays whose
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submatrices have order n,. The form of #°*® is shown in
Fig. 1.
A matrix Q is defined such that

Q"BQ=Y, (B2)

where Y is diagonal. The matrix to be diagonalized is

QTJ@DVR Q - QTBQ + QTKQ

=Y +QTKQ. (B.3)

Recail that

Q=0; (i=1,.,n), (B.4)

with ;=0 for i # j and, pictorially, Q locks exactly like B.
Also, the K matrix may be expressed as a series of
submatrices K;

K=K

—

(h7=1, ... n), (B.5)

where each K, is of order n, and all K, =0. K, = o1, where
o, is a scalar and 1 is the unit matrix.
The matrix-vector multiply is split into parts, viz.,

y=[Y+Q'KQ]x (B.6)
becomes
u=0x (B.7}
v=Ku (B.8)
w=0QTy (B.9)
and
y=Yx+w (B.10)

Ignoring the effects of the truncation scheme (which only
alter the orders of the matrices and not the specific details of
the matrix-vector multiplication), define a vector x which is
divided into n, parts each consisting of #, components,

Xy

Xy

(B.11)

g

The same may be done for the vectors u, v, w, and y.
The operations are
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Q.- x
"X
a=Qx=| 927 |, (B.12)
Qngng : xng
K+ Kjsuy+ - + Ky,
v=Ku= K2]u|+K23u3+ "t +K2,,9u,,9
Kna] Uy + Kng3u2 + o+ Kngng— 1 ung— 1
Ki3Qap X3+ Ki3Qaa X3+ - + KO iny X
_ KZIQI] -x1+K23Q33-x3-+ +K2H3Qﬂgng-xnﬂ (B.13)
. * ’
Kn.ql Qll T Xy + Kﬂ92 Q22 " X2 + -+ Kngng— ] Qngng— 1 xnafl
and
w=0QTy
T T
C1KiO0n X+ 0L K30 X5+ - + O K1y O Xy
T T . T
_ 02K @i xi+00Kn0s x5+ + 023K, Qs X (B.14)
T . T ) .. T ]
m;ngKngl Ql] X + QngngKn02Q22 " X2 + + QngngKngngf 1 Qnang— 1 xng— 1
from which it can be shown by induction that 3. (a) D. W, Schwenke, K. Haug, D. G. Truhlar, Y. Sun, J. Z. H. Zhang,
' and D. J. Kour, J. Phys. Chem. 91, 6080 (1987); (b) D. W. Schwenke,
g K. Haug, M. Zhao, D. G. Truhlar, Y. Sun, J. Z. H. Zhang, and D. J.
w,= Z Q;'IR:KUQﬂ “X; (B.15) Kouri, J. Phys. Chem. 92, 3202 (1988).
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